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Abstract

We survey several results and open problems related to synchroniz-

ing automata. In particular, we discuss some recent advances towards
a solution of the Cerny conjecture.

1 History and motivations

Let & = (Q),3,0) be a deterministic finite automaton (DFA), where @
denotes the state set, ¥ stands for the input alphabet, and § : Q X ¥ — @
is the transition function defining an action of the letters in ¥ on ). The
action extends in a unique way to an action @ x ¥* — @) of the free monoid
¥* over X; the latter action is still denoted by §. The automaton & is
called synchronizing if there exists a word w € X* whose action resets &7,
that is to leave the automaton in one particular state no matter which state

in O it started at: S(a.w) = §(d'.w) for all .0 € Q. Anv word w with
g el at. O\g, W Ag,w; 0L all §,4 < Yy WOIG W

this property is said to be a reset word for the automaton.
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ample of a synchronizing automaton
with 4 states. The reader can easily verify that the word ab®ab®a resets the
automaton leaving it in the state 2. With somewhat more effort one can
also check that ab®ab®a is the shortest reset word for this automaton.

The example in Fig. 1 is due to Jan Cerny, a Slovak computer scientist
in whose pioneering paper [1964] the notion of a synchronizing automaton
explicitly appeared for the first time'. Implicitly, however, this concept has
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Figure 1: A synchronizing automaton

been around since the earliest days of automata theory. The very first syn-
chronizing automaton that we were able to trace back in the literature ap-
peared in Ross Ashby’s classic book [1956, pp. 60-61]. There Ashby presents
a funny puzzle dealing with taming two ghostly noises, Singing and Laugh-
ter, in a haunted mansion (we reproduce the puzzle in Appendix below).
Each of the noises can be either on or off, and their behaviour depends on
combinations of two possible actions, playing the organ or burning incense.
Under a suitable encoding, this leads to the following automaton with 4
states and 4 input letters:

Figure 2: Ashby’s “ghost taming” automaton
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stands for the state when Singing is of but Laughter is on, etc. Similarly, a
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stands for the transition that happens when neither the organ is played nor



incense is burned, b encodes the transition caused by organ-playing in the
absence of incense-burning, etc. The problem is to ensure silence, in other
words, to bring the automaton in Fig.2 to the state 00. Ashby only solves
the problem under the assumption that the automaton is in the state 11
and his suggested solution is encoded by the word acb. However, it is easy
to check that acb is in fact a reset word for the automaton so applying
the corresponding sequence of actions will get the house quiet from any
initial configuration. It is not clear whether or not Ashby realized this nice
feature of his automaton, and moreover, the fact that Ashby’s automaton is
synchronizing seems to be overlooked for many years.

Let us return to the genesis of the concept of synchronizing automata.
In [Cerny, 1964] this notion arose within the classic framework of Edward

Moore’s “Gedanken-experiments” [1956]. For Moore and his followers finite

-

automata served as a mathematical model of devices working in discrete
lay control systems. This leads to the following
natural problem. how can we restore control over such a device if we do not
know its current state but can observe outputs produced by the device under
various actions? Moore [1956] has shown that under certain conditions one
can uniquely determine the state at which the automaton arrives after a
suitable sequence of actions (called an ezperiment). Moore’s experiments
were adaptive, that is, each next action was selected on the basis of the
outputs caused by the previous actions. Seymour Ginsburg [1958] considered
more restricted experiments that he called uniform. A uniform experiment?
is just a fixed sequence of actions, that is, a word over the input alphabet;
thus, in Ginsburg’s experiments outputs were only used for calculating the

rpsu_]t;n(r state at the end of an experiment, From this, just one further
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step was needed to come to the settmg which outputs were not used at
a1l It }\ 11d ho natad that +thic ganttine i hy +tifirial thara

aii. wuld be noted that this setting is by no means artificial—there exist
many practical situations when it is technically impossible to observe output
signals. (Think of a satellite which loops around the Moon and caunot be
controlled from the Earth while “behind” the Moon.)

It is not surprising that synchronizing automata were re-invented a num-
ber of times. First of all, the notion was very natural by itself and fitted
fairly well in what was considered as the mainstream of automata theory
in the 1960s. Second, Cerny’s paper [1964] published in Slovak language
remained unknown in the English-speaking world for quite a long time. As
typical examples, we mention here the report [Laemmel and Rudner, 1969]
and the paper [Fischler and Tannenbaum, 1970] both rediscovering results
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% After [Gill, 1961; 1962], homing sequence has become a standard name for this notion.



from [Cerny, 1964]. The books [Booth, 1967; Hennie, 1968; Kohavi, 1970]
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fer to [Cerny, 1964]. It seems that the situation begun to change only in
1972 when the English translation of the book [Starke, 1969] appeared.
The original “Gedanken-experiments” motivation for studying synchro-
nizing automata is still of importance, and reset words are frequently ap-
plied in model-based testing of reactive systems®. Rather unexpectedly, an
additional source of problems related to synchronizing automata has come
from robotics or, more precisely, from part handling problems in industrial
automation such as part feeding, fixturing, loading, assembly and packing.
Within this framework, the concept of a synchronizing automaton was again
rediscovered in the mid-1980s by Balas Natarajan [1986; 1989]. We explain
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pa of
illustrative example (borrowed fro [Anamchev and Volkov, 2004]).
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Figure 4: Four possible orientations

the “bump-left” orientation (the second one in Fig 4). Thus, one has to
construct an orienter which action will put the part in the prescribed position
independently of its initial orientation.

1.~ ot 51 1nnr), AAAAAAA 0Ol Sc trnieal carinloag Af ftacrhnies PRONRNGS R
1o v al, 1999, L)Uppd,lld Cl.v dl llﬂlﬂlﬂ] ad Ly plCdal Salllples ol hcuuuua COntrinpurions
a and
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Of course, there are many ways to design such an orienter but practi-
cal considerations favor methods which 1"6(,11111’6 little or no Dcualug,, UlupLuy
simple devices, and are as robust as possible. For our particular case, these
goals can be achieved as follows. We put parts to be oriented on a conveyer
belt which takes them to the assembly point and let the stream of the parts
encounter a series of passive obstacles placed along the belt. We need two
type of obstacles: high and low. A high obstacle should be high enough in
order that any part on the belt encounters this obstacle by its rightmost low
angle (we assume that the belt is moving from left to right). Being curried
by the belt, the part then is forced to turn 90° clockwise. A low obstacle
has the same effect whenever the part is in the “bump-dow” orientation

(the first one in Fig. 4); otherwise it does not touch the part which therefore

passes hv without r'h;rnm'ntr the orientation
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the word ab3ab®a, we conclude that the series of obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensor-free orienter.

Since the 1990s synchronizing automata usage in the area of robotic ma-
nipulation has grown into a prolific research direction but it is fair to say
that publications in this direction deal mostly with implementation tech-
nicalities. However, amongst them there are a few papers of significant
theoretical importance such as [Eppstein, 1990] (where results from [Cerny,

1964] were rediscovered again), [Goldberg, 1993], [Chen and Ierardi, 1994].



Speculating about further possible applications of synchronizing autom-
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nenson et al, 2001; 2003] in which DNA molecules have been used as both
hardware and software for finite automata of nanoscaling size. For instance,
Benenson et al [2003] produced a “soup of automata”, that is, a solution
containing 3x 102 identical automata per p1. All these molecular automata
can work in parallel on different inputs, thus ending up in different and un-
predictable states. In contrast to an electronic computer, one cannot reset
such a system by just pressing a button; instead, in order to synchronously
bring each automaton to its “ready-to-restart” state, one should spice the
soup with (sufficiently many copies of) a DNA molecule whose nucleotide
sequence encodes a reset word.

Clearly, from the viewpoint of applications, real or yet imaginary, algo-
~ J ) r rr J O JI? te]
rithmic and complexity issues are of crucial importance. We discuss them

in Section 2.

Putting applications aside, mathematicians since the 1960s have inten-
sively studied synchronizing automata per se, as an interesting combinato-
rial object. These studies are mainly motivated by the Cerng conjecture.
Cerny [1964] constructed for each n > 1 a synchronizing automaton %,
with n states which shortest reset word has length (n —1)? (the automaton
in Fig. 1 is %} ). Soon after that he conjectured that those automata repre-
sent the worst possible case, that is, every synchronizing automaton with n
states can be reset by a word of length (n—1)2. By now this simply looking
conjecture is arguably the most longstanding open problem in the combina-
torial theory of finite automata. We will discuss the Cerny conjecture and

some related nn‘rhn] results in Section 3.

Other mathematical motivations for studying synchronizing automata

t v [see Ananichev and Volkov. 2004)]. multi
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come from semigroup
valued logic and symbolic dynamics [see Mateescu and Salomaa, 1999]. The
latter connection is especially interesting in view of a recent breakthrough
in the area—a (positive) solution to the Road Coloring Problem found by
Avraham Trahtman [2008], but it clearly deserves a separate survey and will
not be touched here.
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very first question that we should address is the following one: given an
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This question is in fact quite easy, and the most straightforward solution
to it can be achieved via the classic power automaton construction. Recall
that the power automaton P(&/) of a given DFA & = (Q,X,d) has the
collection P'(@) of the non-empty subsets of @ as the state set and the
natural extension of d to the set P'(Q) x ¥ as the transition function (still
denoted by d). In other words, for P being a non-empty subset of ¢ and
a € X, one sets 0(P,a) = {d(p,a) | p € P}. Fig.6 presents the power
automaton for the DFA %, shown in Fig. 1.

Figure 6: The power automaton P(%})



Now it is obvious that a word w € ¥* is a reset word for the DFA
& if and 01’1‘1‘_)/' if w labels a pabh sl l’\&t/} star 01115 at lcd and Uudlug, at
a singleton. (For instance, the bold path in Fig. 6 represents the shortest
reset word ab®aba of the automaton %}.) Thus, the question of whether or
not a given DFA &/ is synchronizing reduces to the following reachability
question in the underlying digraph of the power automaton P(«7): is there
a path from @ to a singleton? The latter question can be easily answered
by breadth-first search [see, e.g., Corman et al, 2001, Section 22.2].

The described procedure is conceptually very simple but rather inefficient
because the power automaton P(&) is exponentially larger than <. How-
ever, the following criterion of synchronizability [Cerny, 1964, Theorem 2|

gives rise to a polynomial algorithm.

Proposition 2.1. A DFA o = (Q,%,0) is synchronizing if and only if
for every q,q' € Q there exists a word w € ¥* such that §(q,w) = §(q', w).

One can treat Proposition 2.1 as a reduction of the synchronizability
problem to a reachability problem in the subautomaton P?/(&7) of P()
whose states are 2-element and 1-element subsets of (). Since the subau-
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tomaton has states, breadth-first search solves this problem in

O(|Q|* - |2|) time. This complexity bound assumes that no reset word is
explicitly calculated. If one requires that, whenever &/ turns out to be syn-
chronizing, a reset word is produced, then the best of the known algorithms
(which is due to [Eppstein, 1990, Theorem 6], see also fSandberfz, 2005, The-
orem 1.15]) has an implementation that consumes O(|Q|*> + |Q|? - |Z|) time

and O(1Q|2 + |f)| |Y‘|\ Wn‘rkl‘ncr space, not counting the space for the outnut
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which is O( |Q| )
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construct shortest reset words which correspond to shortest paths from the
whole state set to a singleton. Of course, this requires exponential (of |@])
time in the worst case. Nevertheless, there were attempts to implement this
approach [see, e.g., Rho et al, 1993; Trahtman, 2006a]. One may hope that,
as above, a suitable calculation in the “polynomial” subautomaton P2 ](d )
may yield a polynomial algorithm. However, it is not the case, and moreover,
as we will see, it is very unlikely that any reasonable algorithm may exist
for finding shortest reset words in general synchronizing automata. In the
following discussion we assume the reader’s acquaintance with some basics of
computational complexity (such as the definitions of the complexity classes
NP, coNP and PSPACE) that can be found, e.g., in [Garey and Johnson,

1979; Papadimitriou, 1994].



Consider the following decision problems:
SHORT-RESET-WORD: Given a synchronizing automaton & = (Q,%,0)
and a positive integer £, is it true that <&/ has a reset word of length £?
SHORTEST-RESET-WORD: Given a synchronizing automaton & = (Q, 3, 0)

and a positive integer £, is it true that the minimum length of a reset
word for o is equal to £7?
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can non-deterministically guess a word w € ¥* of length ¢ and then check
if w is a reset word for &7 in time ¢|Q)|. Eppstein [1990] has proved that
SHORT-RESET-WORD is NP-hard by a polynomial reduction from 3-SAT.
Thus, SHORT-RESET-WORD is NP-complete. Other proofs for the same
result (all via reductions from 3-SAT) have been suggested in [Goraléik and
Koubek, 1995; Salomaa, 2003; Samotij, 2007]. From the proofs it follows
easily that SHORTEST-RESET-WORD is NP-hard; recently Wojciech Samotij
[2007] has shown that the negation of 3-SAT can be polynomially reduced to
SHORTEST-RESET-WORD whence the latter problem is also coNP-hard. Asa
corollary, SHORTEST-RESET-WORD cannot belong to NP unless NP = coNP
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deterministic algorithms cannot find the minimum length of a reset word for
iven synchronizing automaton in polynomial time.
On the other hand, the exhaustive search for reset words through all
words over % of length < ¢ can be performed in polynomial (in fact, linear)
space since one can reuse space. Thus, the problem SHORTEST-RESET-
WORD belongs to the complexity class PSPACE; the question of the precise
location of this problem with respect to the polynomial hierarchy still re-
mains open.

By a standard argument, the hardness of the decision problem SHORT-
RESET-WORD implies that its optimization version, in which one seeks a
reset word of minimum length for a given synchronizing automaton, is hard
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as well. This does not exclude however that the optimization problem may
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isting proofs for NP-hardness of SHORT-RESET WORD are consistent with
the conjecture that such an algorithm exists. Proving or disproving this
conjecture constitutes an intriguing (and probably difficult) research prob-
lem. In this connection, we mention that Pixley et al [1992] suggested an
heuristic algorithm for finding short reset words in synchronizing automata
that was reported to perform rather satisfactory on a number of benchmarks
from [Yang, 1991]; further algorithms yielding short (though not necessarily

shortest) reset words were implemented by Trahtman [2006a).



3 The Cerny conjecture

In this section we discuss results and open problems related to the fol-
lowing natural question: given a positive integer n, how long can be reset
words for synchronizing automata with n states?

First of all, we recall Cerny’s construction [1964]. For n > 1, let %,
stand for the DFA whose states are the residues modulo n and whose input
letters a and b act as follows:

(0 a) =1
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Figure 7: The automaton %,

Cerny [1964] has proved that %, is a synchronizing automaton and that
its shortest reset word is (ab™"~!)"~2a of length (n — 1)2. (This nice series
of automata has been rediscovered many times, see, e.g., [Laemmel and
Rudner, 1969; Fischler and Tannenbaum, 1970; Eppstein, 1990].) Thus, if
we define the Cerng function C(n) as the maximum length of shortest reset
words for synchronizing automata with n states, the above property of the
series {%,}, n=2,3,..., yields the inequality C(n) > (n— 1)2. The éemgj
conjecture is the clalm that in fact the equality C ( = (n —1)? holds true.
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Cerny conjecture. In fact, the conjecture was not yet formulated in that
paper. There Cerny only observed that

(n—1)?<Cmn)<2"—n—1 (1)
and concluded the paper with the following remark:

“The difference between the bounds increases rapidly and it is
necessary to sharpen them. One can expect an improvement
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mainly for the upper bound.”
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The conJecture in its present- day form was formulated a bit later, after
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(Namely, Starke improved the upper bound in (1) to 1+ ﬂ"—lﬂu, which
was the first polynomial upper bound for C(n).) Cerny explicitly stated
the conjecture C'(n) = (n — 1)? in his talk at the Bratislava Cybernetics
Conference held in 1969; in print the conjecture first appeared in [Cerny et
al, 1971].

The best upper bound for the Cerny function C(n) achieved so far guar-
antees that for every synchronizing automaton with n states there exists a
reset word of length n-n - Such a reset word arises as the output of the

6
following greedy algorithm
O O J o~

Algorithm 3.1.
input & = (Q,%,0) (a DFA)
initialization w < 1 (the empty word)
P+—Q
while |P| > 1 find a word v € ¥* of minimum length with [§(P,v)| < |P|;
if none exists, return Failure

w < wv
P(_S(Pq)

return w

If |Q] = n, then clearly the main loop of Algorithm 3.1 is executed at

most n — 1 times. T'n nrrlnr to Qva]nnfn fhn lenoth n'F fha n11fh11f nrnrﬂ w. we
most n times tne iengin ¢ w,

have to estimate the length of each word v produced by the main loop.
A AT e 1+
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a; €, 1=1,...,£. Then it is easy to see that the sets
P1 = P, PQ = 5(P1,a1), ey Pg = 5(Pg_1,ag_1)

are k-element subsets of ). Furthermore, since |0(FPy,ap)| < |Py|, there
exist two states qr,q; € P, such that §(qs,ar) = 6(q),ar). Now define 2-
element subsets R; = {¢;,q;} C P;, i =1,...,¢, such ‘that 0(qi, i) = Qit1,

a . a:) = n’ for 7 — 1,... / — 1. Then fhp r-nurhflnu that v is a word of
"’\‘11/7""51 l—’—l ~ v v it Vil LASLEaL VA vartvy o v had
minimum length with |d( P v)| < | | 1mplies that R; € Pjfor 1 <j <4</,
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Question 3.1. Let () be an n-element set, Py,...,P; a sequence of
its k-element subsets (k > 1) and Ry,..., Ry a sequence of its 2-element

sets. Suppose that R; C P; fnr each 1 = 1,.... ¢ but R; ,(Z _Pj for

sub
1<j<i<¥{. How big the number £ can be?
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