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Introduction

The lattice of semigroup varieties is a disjoint union of its ideal P consisting
of all varieties of periodic semigroups and its coideal Q consisting of all varieties
containing a non-periodic semigroup. Since every non-periodic semigroup contains
a subsemigroup isomorphic to the additive semigroup of positive integers which
generates the variety Comm of all commutative semigroups, Q is nothing but
the principal coideal determined by Comm and varieties from Q are said to be
overcommutative.

It is well known that the lattice of commutative semigroup varieties is rather
bad from the point of view of the lattice theory — it contains an isomorphic copy
of every finite lattice as follows from [1] and [6]. This implies that all non-trivial
lattice conditions which are inherited by sublattices fail in this lattice and hence
in the subvariety lattice of every overcommutative variety. Therefore the study
of those conditions has always led to considering some sublattices of P only and
almost nothing was known about the lattice structure and properties of Q.

The aim of the present paper is to show that the lattice structure of Q is,
however, surprisingly transparent. Namely, Q is a special subdirect product of a
family of finite lattices; each of these finite lattices is dual to the congruence lattice
of a G-set (that is a set on which a group G acts and which is considered as a
unary algebra) where G runs over the set of all groups of permutations of rows of
a Young diagram. These results admit several interesting applications connected,
in particular, with the embeddability questions for the lattice Q; in some other
place we shall also demonstrate how they apply to study of the identities of this
lattice (such as modularity or distributivity).
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1 Derivation of balanced identities

Recall that an identity is said to be balanced if each letter occurs on both its
sides the same number of times. It is well known that an identity is balanced
if and only if it holds in the variety Comm. Thus, each identity satisfied by a
overcommutative variety V is balanced.

Let u be a word. We denote by `(u) the length of u. If u ≈ v is a balanced
identity, then clearly `(u) = `(v). This number is called the length of the identity
u ≈ v and is denoted by `(u ≈ v). By n(u) we denote the number of different
letters occurring in u; if u ≈ v is a balanced identity, then clearly n(u) = n(v) and
we use the notation n(u ≈ v) for this number. The last parameter we associate
with the word u is a partition of the number `(u) into n(u) parts. The partition
(denoted by part(u)) consists of the positive integers λ1, λ2, . . . , λn(u) such that
λ1 ≥ λ2 ≥ . . . ≥ λn(u) and λ1 + λ2 + · · · + λn(u) = `(u); each λi is the number of
occurrences of a letter in the word u. Again, if u ≈ v is a balanced identity, then
part(u) = part(v); so the notation part(u ≈ v) is justified.

Let Σ be a system of identities. We shall use the following well-known descrip-
tion of the set of all consequences of Σ:

Proposition 1.1 An identity u ≈ v follows from the system Σ if and only if
there exists a sequence of words w0, w1, . . . , wk such that u ≡ w0, v ≡ wk and,
for every i = 0, 1, . . . , k − 1, either wi ≡ wi+1 or there are words ai, bi, si, ti and a
substitution ζi such that wi ≡ aiζi(si)bi, wi+1 ≡ aiζi(ti)bi and at least one of the
identities si ≈ ti and ti ≈ si belongs to the system Σ.

We say that the sequence w0, w1, . . . , wk is a derivation of u ≈ v from Σ and
use the following notation:

u ≡ w0
Σ−→ w1

Σ−→ . . .
Σ−→ wk ≡ v. (1)

If Σ is the set of all identities of a variety X, then we mark arrows by X’s instead
of Σ’s etc.

It follows immediately from Proposition 1.1 that if Σ consists of balanced
identities, then each of its consequences is balanced as well. An easy but crucial
for what follows corollary of the Proposition is that the parameters defined above
are, in a sense, invariant with respect to the derivation process. More precisely,
given a system Σ of balanced identities, we define

`(Σ) = min{`(s ≈ t)| (s ≈ t) ∈ Σ},
n(Σ) = max{n(s ≈ t)| (s ≈ t) ∈ Σ, `(s ≈ t) = `(Σ)},

part(Σ) = {λ| ∃(s ≈ t) ∈ Σ `(s ≈ t) = `(Σ), n(s ≈ t) = n(Σ), part(s ≈ t) = λ}.
Then we have
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Corollary 1.2 Let Σ be a set of balanced identities and a non-trivial identity
u ≈ v be a consequence of Σ. Then

1. `(u ≈ v) ≥ `(Σ);

2. n(u ≈ v) ≤ n(Σ) whenever `(u ≈ v) = `(Σ);

3. part(u ≈ v) ∈ part(Σ) whenever `(u ≈ v) = `(Σ) and n(u ≈ v) = n(Σ).

Proof: Let (1) be a derivation of u ≈ v from Σ. All the identities wi ≈ wi+1 in
this derivation are balanced and therefore

`(u ≈ v) = `(wi ≈ wi+1),

n(u ≈ v) = n(wi ≈ wi+1),

part(u ≈ v) = part(wi ≈ wi+1)

for all i = 0, . . . , k− 1. In other words, we can restrict ourselves to the case when
the number k of steps of the derivation (1) is equal to 1. Thus, we may assume
that there is a substitution ζ and words a, b, s, t such that u ≡ aζ(s)b, v ≡ aζ(t)b
and at least one of the identities s ≈ t and t ≈ s belongs to the system Σ. Then
it is clear that

`(u ≈ v) = `(u) = `(aζ(s)b) = `(a) + `(ζ(s)) + `(b) ≥
≥ `(ζ(s)) ≥ `(s) = `(s ≈ t) = `(t ≈ s) ≥ `(Σ). (2)

Now suppose that `(u ≈ v) = `(Σ). Then (2) implies that `(a) = `(b) = 0 (which
means that the words a and b are empty) and `(ζ(s)) = `(s) which means that the
substitution ζ maps every letter occurring in the word s to a letter. This implies
that n(ζ(s)) ≤ n(s) and therefore

n(u ≈ v) = n(u) = n(ζ(s)) ≤ n(s) = n(s ≈ t) = n(t ≈ s) ≤ n(Σ).

The latter inequality shows that n(ζ(s)) = n(s) = n(Σ) whenever n(u ≈ v) =
n(Σ). This means that the restriction of ζ to the set of all letters occurring in s is
a bijection of the set onto a set of n(Σ) letters; in other words, it simply renames
letters of s. Therefore part(ζ(s)) = part(s) and

part(u ≈ v) = part(u) = part(ζ(s)) = part(s) =

= part(s ≈ t) = part(t ≈ s) ∈ part(Σ).

Thus, all statements of the corollary are verified.
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2 A subdirect decomposition of Q
For each n ≥ 2, let Cn denote the variety defined by all balanced identities of
length ≥ n. Clearly,

Comm = C2 ⊂ C3 ⊂ C4 ⊂ . . . .

Now let n ≥ m ≥ 1. We denote by Cm
n the variety defined by all balanced identities

of length > n together with all balanced identities of length n depending on ≤ m
letters. Clearly,

Cn = Cn
n ⊂ Cn−1

n ⊂ Cn−2
n ⊂ . . . ⊂ C2

n ⊂ C1
n = Cn+1.

(The last equality follows from the fact that there are no non-trivial balanced
identities on 1 letter.)

The aim of this Section is to show that the latticeQ is isomorphic to a subdirect
product of its intervals of the kind [Cm

n ,C
m−1
n ], where 2 ≤ m ≤ n.

Recall that an element d of a lattice (L;∨,∧) is called distributive if, for all
x, y ∈ L,

d ∨ (x ∧ y) = (d ∨ x) ∧ (d ∨ y)

and codistributive if, for all x, y ∈ L,

d ∧ (x ∨ y) = (d ∧ x) ∨ (d ∧ y).

Lemma 2.1 For each pair m,n such that 1 ≤ m ≤ n = 2, 3, . . ., the variety Cm
n

is both a distributive and codistributive element of the lattice Q.

Proof: Let X,Y∈ Q. To prove that

Cm
n ∨ (X∧Y) = (Cm

n ∨X) ∧ (Cm
n ∨Y), (3)

it suffices to show that the left side of (3) contains the right one; this means
that every identity u ≈ v holding in the variety Cm

n ∨ (X∧Y) holds also in the
variety (Cm

n ∨X)∧(Cm
n ∨Y). Clearly, `(u ≈ v) ≥ n and if `(u ≈ v) = n, then

n(u ≈ v) ≤ m. An arbitrary derivation of this identity from the identities of the
varieties X and Y can be rewritten in the form:

u ≡ w0
X−→ w1

Y−→ . . . −→ wk ≡ v, (4)

where the identity wi ≈ wi+1 holds in X for each even i and in Y for all odd i. All
these identities are balanced and, for all i, we have `(wi) = `(u ≈ v) ≥ n and if
`(wi) = `(u ≈ v) = n, then n(wi) = n(u ≈ v) ≤ m. Therefore, for all i, they hold
in the variety Cm

n . Hence the identity wi ≈ wi+1 holds in Cm
n ∨X for each even
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i and in Cm
n ∨Y for all odd i and therefore we may consider (4) as a derivation

of the identity u ≈ v from the identities of the variety (Cm
n ∨X)∧(Cm

n ∨Y). The
equality (3) is proved.

To prove that

Cm
n ∧ (X∨Y) = (Cm

n ∧X) ∨ (Cm
n ∧Y), (5)

it is enough to check that right side of (5) contains the left one. In other words, we
have to show that every identity u ≈ v holding in the variety (Cm

n ∧X)∨ (Cm
n ∧Y)

holds also in the variety Cm
n ∧ (X∨Y). If either `(u ≈ v) > n or `(u ≈ v) = n and

n(u ≈ v) ≤ m, then u ≈ v holds even in Cm
n and everything is clear. Otherwise,

deriving u ≈ v from the identities of the variety Cm
n ∧X, we may apply no identity

of Cm
n since all these identities are either “too long” or have too few letters, as

Corollary 1.2 shows. Thus, only identities of X may be used in such a derivation
and this means that u ≈ v holds in the variety X. Analogously, u ≈ v holds
in the variety Y. Therefore it holds in the join X∨Y and hence in the variety
Cm
n ∧ (X∨Y) too. We have got the equality (5).

Proposition 2.2 The lattice Q is isomorphic to a subdirect product of its intervals
of the kind [Cm

n ,C
m−1
n ], where 2 ≤ m ≤ n.

Proof: Define a mapping ϕmn : Q −→[Cm
n ,C

m−1
n ] by the rule:

ϕmn (X) = (X∨Cm
n )∧Cm−1

n .

Lemma 2.1 immediately implies that ϕmn is a lattice homomorphism for each pair
m,n such that 2 ≤ m ≤ n. Since the restriction of ϕmn to [Cm

n ,C
m−1
n ] is the

identical mapping, this homomorphism is surjective. It remains to verify that the
homomorphisms ϕmn separate Q; that is, for every X,Y∈ Q such that X6=Y, there
exist m,n such that ϕmn (X) 6= ϕmn (Y). Indeed, without loss of generality we may
assume that there is an identity u ≈ v, which holds in X and fails in Y. Let
n = `(u ≈ v), m = n(u ≈ v). Then the identity u ≈ v holds in the variety Cm

n

and hence it is also true in the variety ϕmn (X) = (X∨Cm
n )∧Cm−1

n . Suppose that
this identity holds in the variety ϕmn (Y) = (Y∨Cm

n )∧Cm−1
n . Corollary 1.2 shows

that no identity of the variety Cm−1
n may take part in the derivation of u ≈ v from

the identities of (Y∨Cm
n )∧Cm−1

n which means that u ≈ v should be satisfied by
Y∨Cm

n and hence by Y, a contradiction. Thus, u ≈ v fails in the variety ϕmn (Y)
and ϕmn (X) 6= ϕmn (Y).

It is easy to see that all the intervals [Cm
n ,C

m−1
n ] are finite. Indeed, every

variety X∈ [Cm
n ,C

m−1
n ] is defined within the variety Cm−1

n by some system Σ of
identities of the length n depending on m letters. Renaming the letters, we may
assume that each identity in Σ depends on the letters x1, x2, . . . , xm. Since there
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are only finitely many words of length n over an m-element alphabet, there are
only finitely many possibilities for Σ and hence for X. This remark and Proposition
2.2 imply

Corollary 2.3 The lattice Q is residually finite.

Corollary 2.4 The dual of the lattice EqM of all equivalences on an infinite set
M cannot be embedded into the lattice Q.

Proof: A sublattice of a residually finite lattice is residually finite. Since the
lattice EqM is simple [2, Theorem IV.4.2], it fails to be residually finite whenever
M is infinite. The result now follows from Corollary 2.3.

Corollary 2.4 strengthens a result by McNulty [4] who proved that, for no
infinite M , the dual of EqM can be embedded into Q as an interval. We note
that Q contains an isomorphic copy of the dual of the lattice EqM for any finite
set M , see Corollary 4.5 below.

3 A direct decomposition of [Cm
n ,C

m−1
n ]

We fix now integers m and n such that 2 ≤ m ≤ n. Let λ = (λ1, . . . , λm) be a
partition of n into m parts. We denote by Cm

n (λ) the variety given within the
variety Cm−1

n by all balanced identities u ≈ v such that

`(u ≈ v) = n, n(u ≈ v) = m, part(u ≈ v) = λ.

Our next step in describing the lattice of all overcommutative semigroup varieties
is the following

Proposition 3.1 The interval [Cm
n ,C

m−1
n ] is isomorphic to a direct product of

the intervals [Cm
n (λ),Cm−1

n ] where λ runs over the set of all partitions of n into m
parts.

Proof: Let
L =

∏

λ

[Cm
n (λ),Cm−1

n ].

Consider two mappings α : [Cm
n ,C

m−1
n ] −→ L and β : L −→ [Cm

n ,C
m−1
n ] defined

by the rules
α(X) = (. . . ,X∨Cm

n (λ), . . .);

β(. . . ,Yλ, . . .) =
∧

λ

Yλ.

We are going to prove that α and β are mutually inverse bijections. Since both
α and β are obviously order-preserving, this will imply that [Cm

n ,C
m−1
n ] and L
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are isomorphic as posets and the latter is well known to be equivalent to their
isomorphism as lattices. To prove that β(α(X)) =X, we have to verify that

∧

λ

(X∨Cm
n (λ)) = X. (6)

It suffices to show that the left side of (6) is contained in its right side. Let us take
an arbitrary identity u ≈ v holding in X; we have to check that it holds in the left
side of (6). If `(u ≈ v) > n or `(u ≈ v) = n, n(u ≈ v) < m, then u ≈ v is true
even in the variety Cm−1

n . Thus, we may assume that `(u ≈ v) = n, n(u ≈ v) = m
and then u ≈ v will hold in the variety Cm

n (λ) where λ = part(u ≈ v). Hence
u ≈ v is also true in X∨Cm

n (λ) and in
∧
λ X∨Cm

n (λ)).
It remains to check that α(β(. . . ,Yλ, . . .)) = (. . . ,Yλ, . . .), that is,

Cm
n (µ) ∨∧

λ

Yλ = Yµ. (7)

Here it is sufficient to prove that the left side of (7) contains the right one. Let
u ≈ v be an identity holding in Cm

n (µ)∨∧λ Yλ; we want to show that it holds in
the variety Yµ. This is clear if `(u ≈ v) > n or `(u ≈ v) = n, n(u ≈ v) < m since
the variety Cm−1

n satisfies u ≈ v in that case. If `(u ≈ v) = n and n(u ≈ v) = m,
then part(u ≈ v) = µ for u ≈ v should be true in the variety Cm−1

n (µ). Corollary
1.2 implies that deriving u ≈ v from the identities of the varieties Yλ, we may
apply no identity of a variety Yλ where λ 6= µ. Therefore u ≈ v holds in Yµ and
we have got the equality (7).

4 Isomorphism theorem

Proposition 2.2 and 3.1 reduce the problem of describing the lattice Q to the
problem of determining the structure of its intervals of the kind [Cm

n (λ),Cm−1
n ].

Let us fix a partition λ = (λ1, . . . , λm) of n. We associate with λ the following
subgroup Gλ of the group Symm of all permutation of the set {1, . . . ,m}:

Gλ = {π| iπ = j ⇒ λi = λj}.
λ1

λ2

. . . . . . . . . . . . . . . . . . . . . . .
λi

. . . . . . . . . . . . . . . . . . . .
λj

. . . . . . . . . . . . . . . . . .
λm

If we, as it is usual, visualize λ by means of a
Young diagram, then we may identify Gλ with
the group of all permutations on the set of rows
of the diagram which preserve the diagram (or,
more accurately, the form of the diagram). The
group structure of Gλ is rather transparent: it
is isomorphic to a direct product of the sym-
metric groups Symκk , where κk is the number
of rows of length k in the diagram.
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Let W [n,m, λ] denote the set of all words w of length n such that the letter xi
occurs in w exactly λi times for all i = 1, . . . ,m. (So, in particular, part(w) = λ
for every w ∈ W [n,m, λ].) There is a natural action of Gλ on W [n,m, λ] by
permuting indices of the letters1:

π(w(x1, . . . , xm)) = w(x1π, . . . , xmπ).

This action is obviously a representation of Gλ by transformations of the set
W [n,m, λ]. Following [3], we consider triples of the kind (M,G,ϕ), where G is a
group and ϕ : G −→Sym(M) is a representation of G by transformations of a set
M , as unary algebras with the carrier M and the set of unary operations G and
call these unary algebras G-sets. Thus, W [n,m, λ] is a Gλ-set. Below, speaking
about congruences on W [n,m, λ], we ever have in mind this unary structure.

Theorem 4.1 For any pair m,n such that 2 ≤ m ≤ n and for any partition λ
of n into m parts, the interval [Cm

n (λ),Cm−1
n ] is antiisomorphic to the congruence

lattice of the Gλ-set W [n,m, λ].

Proof: We will make use of the well known antiisomorphism between the lattice
of semigroup varieties and the lattice of fully invariant congruences on the free
semigroup F over the alphabet {x1, x2, . . .}. If ρm−1

n (resp., ρmn (λ)) is the fully
invariant congruence corresponding to the variety Cm−1

n (resp., Cm
n (λ)), then the

interval [Cm
n (λ),Cm−1

n ] is antiisomorphic to the interval [ρm−1
n , ρmn (λ)] of the latter

lattice. Thus it suffices to prove that the interval [ρm−1
n , ρmn (λ)] is isomorphic to

the lattice ConW [n,m, λ].
For a fully invariant congruence ρ ∈ [ρm−1

n , ρmn (λ)], let ρ↓ denote the restriction
of ρ to W [n,m, λ]. Since permutations from Gλ obviously expand to automor-
phisms of F , the relation ρ↓ is a congruence on W [n,m, λ]. Conversely, for a
congruence γ on W [n,m, λ], let γ↑ be the join (in the lattice of fully invariant
congruences on F ) of the fully invariant congruence generated by γ with the con-
gruence ρm−1

n . Since both the mappings ρ 7→ ρ ↓ and γ 7→ γ ↑ are obviously
order-preserving, it suffices to verify that the are mutually inverse bijection. This
means that, for each ρ ∈ [ρm−1

n , ρmn (λ)], ρ↓↑= ρ and, for each γ ∈ ConW [n,m, λ],
γ↑↓= γ.

Since ρ is a fully invariant congruence containing both ρ↓ and ρm−1
n , it con-

tains the fully invariant congruence ρ↓↑ they generate. Conversely, suppose that
(u, v) ∈ ρ\ρm−1

n ⊆ ρmn (λ)\ρm−1
n . Then u and v are words of the length n depending

on the same m letters (say, y1, . . . , ym) and part(u) = part(v) = λ. Let ζ be an au-
tomorphism of the semigroup F such that ζ(yi) = xi for all i = 1, . . . ,m. Applying

1We denote by the same letter the permutation itself and the transformation of W [n,m, λ] it
induces, but we write permutations on the right side from the argument while the transformations
are written on the left side.
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it to u and v, we get words ζ(u) and ζ(v) which lie in the set W [n,m, λ] and are ρ-
related. Thus, (ζ(u), ζ(v)) ∈ ρ↓ which means that (u, v) = (ζ−1(ζ(u)), ζ−1(ζ(v)))
belongs to the fully invariant congruence generated by rho↓.

It is clear that γ↑↓ contains γ. Conversely, let (u, v) ∈ γ↑↓. This means that
the words u and v lie in W [n,m, λ] and (u, v) ∈ γ↑. If we consider γ as a set of
identities, then γ↑ is nothing but the set of all consequences of γ and therefore its
structure is described by Proposition 1.1. This means that there exists a derivation

u ≡ w0
γ−→ w1

γ−→ . . .
γ−→ wk ≡ v, (8)

of u ≈ v from γ. All the identities wi ≈ wi+1 in (8) are balanced and therefore
`(wi) = `(u) = n, n(wi) = n(u) = m, and part(wi) = part(u) = λ for all
i = 0, . . . , k. This means that wi ∈ W [n,m, λ] for all i = 0, . . . , k; in other
words, it suffices to consider only the case when the number k of steps of the
derivation (8) is equal to 1. Then there are words a, b, s, t and a substitution ζ
such that u ≡ aζ(s)b, v ≡ aζ(t)b and sγt. Since `(u) = `(s), the words a and
b should be empty and ζ should map each of the letters x1, . . . , xm on a letter;
furthermore, since u depends on the same letters x1, . . . , xm, the restriction of ζ
to the set {x1, . . . , xm} is a permutation of this set. Therefore ζ restricted to the
set W [n,m, λ] belongs to the group Gλ. Now we can finally utilize the fact that
γ is a congruence of W [n,m, λ] as a Gλ-set. This means, in particular, that sγt
implies u ≡ ζ(s)γζ(t) ≡ v.

Consider a very special but still interesting case when n = m. In this case there
exists only one partition λ of n into m parts (namely, n = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

). Clearly,

the set W [n,m, λ] is merely the set Mn of all words of the kind x1π · · · xmπ, where
π runs over the symmetric group Symm of all permutations of the set 1, . . . ,m,
Cm
n (λ) =Cm

m, and the group Gλ coincides with Symm. Since the group Symm

acts on the Symm-set Mn transitively, we may apply the following well known
result to calculate the congruence lattice of this unary algebra:

Lemma 4.2 (see, for instance, [3, Lemma 4.20]) If A is a transitive G-set, then,
for any a ∈ A, the lattice ConA is isomorphic to the interval [StabG(a), G] in the
subgroup lattice of G, where StabG(a) = {g ∈ G| g(a) = a}.

Combining Theorem 4.1 and Lemma 4.2, we immediately obtain

Corollary 4.3 For any m ≥ 2, the interval [Cm
m,C

m−1
m ] is antiisomorphic to the

subgroup lattice of the symmetric group Symm.

Since every finite lattice can be embedded into the subgroup lattice of a finite
group (see [6]) and every finite group can be identified with a subgroup of Symm,
we get also
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Corollary 4.4 Every finite lattice can be embedded into the lattice Q of all over-
commutative semigroup varieties.

We note that not every countable lattice can be embedded into Q as it follows
from Corollary 2.3. Our results also imply that the question whether every finite
lattice can be embedded into the lattice Q as an interval is connected with the
well known open problem in universal algebra of whether every finite lattice is
isomorphic to the congruence lattice of a finite algebra. (Indeed, in view of a
result by Pálfy and Pudlák [5], the latter property is equivalent to the property
that every finite lattice is isomorphic to an interval in the subgroup lattice of a
finite group.) We have, however, the following partial result related to interval
embeddings into Q:

Corollary 4.5 For any finite set M the lattice Q contains an interval which is
antiisomorphic to the lattice EqM of all equivalences on M .

Proof: Let n = m(m+ 1)/2 and denote by λ the partition n = 1 + 2 + · · ·+m.
Since the numbers λi are pairwise different, the group Gλ is trivial and therefore
every equivalence on the set W [n,m, λ] is a congruence of this Gλ-set. By Theorem
4.1 the interval [Cm

n (λ),Cm−1
n ] is antiisomorphic to the lattice EqW [n,m, λ]. Since

the cardinality of W [n,m, λ] increases when m → ∞, we can identify any finite
set M with a subset of W [n,m, λ] for some m and it is clear that EqW [n,m, λ]
contains an interval isomorphic to EqM for each M ⊆ W [n,m, λ]

5 The lattice of overcommutative subvarieties of

a variety

Let V be a variety containing the variety Comm of all commutative semigroups.
We call the interval [Comm,V] of the lattice of all semigroup varieties the lattice of
overcommutative subvarieties of V and denote it by Lo(V). The aim of this Section
is to show that most of the previous results can be “relativized” to provide us with
a description of the lattice Lo(V) for an arbitrary overcommutative variety V. This
relativization can be carried out in two (of course, equivalent) ways. First, we can
work within the free semigroup F (V) of the variety V instead of the free semigroup
F . All we need is to define the parameters `(s), n(s), and part(s) for elements of
F (V) and this can be done straightforwardly by letting `(s) = `(u), n(s) = n(u),
and part(s) = part(u), where u ∈ F is an arbitrary preimage of s ∈ F (V). (Such
the definition is correct because no application of a balanced identity can change
the value of the parameters in question.) After `(s), n(s), and part(s) have been
defined, all the constructions and principal results of Sections 2–4 transfer to the
lattice Lo(V) automatically for we can repeat all the arguments literally. The
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point of view is quite natural but we shall go another way. Namely, we prefer
to keep working within F rather than within F (V). The use of “proper” words
makes the constructions more explicit, which is important if one wants to calculate
the lattice Lo(V) practically. The disadvantage of this approach consists in the
necessity of reproving the “relative” variants of our previous results. These proofs,
however, are not too hard.

Denote by Vm
n the intersection V∧Cn

m.

Proposition 5.1 The lattice Lo(V) is isomorphic to a subdirect product of their
intervals of the kind [Vm

n ,V
m−1
n ], where m,n = 2, 3, . . . and m ≤ n.

Proof: Restricting to the lattice Lo(V) the homomorphisms

ϕmn : X 7−→ (X∨Cm
n )∧Cm−1

n

constructed in the proof of Proposition 2.2, we obtain a decomposition of this
lattice into a subdirect product of the intervals of the kind [ϕmn (Comm), ϕmn (V)].
We note that

ϕmn (Comm) = (Comm∨Cm
n )∧Cm−1

n =C
m
n ,

ϕmn (V) = (V∨Cm
n )∧Cm−1

n = in view of Lemma 2.1

= (V∧Cm−1
n )∨C

m
n = Vm−1

n ∨C
m
n .

Thus, in order to prove the Proposition, it remains to check that the intervals
[Cm

n ,V
m−1
n ∨Cm

n ] and [Vm
n ,V

m−1
n ] are isomorphic.

Using Lemma 2.1 we get that the mapping X7→X∨Cm
n is a homomorphism

of the latter interval onto the former one. To show that this homomorphism is
1–1, take two varieties X,Y ∈ [Vm

n ,V
m−1
n ]. They are defined within the variety

Vm−1
n by identities of length n depending on m letters; therefore, if X 6= Y, then

without loss of generality we may assume that there is an identity u ≈ v such that
`(u ≈ v) = m, n(u ≈ v) = m, which holds in X and fails in Y. Since u ≈ v holds
in the variety Cm

n , it is also true in the variety X∨Cm
n and would we suppose that

X ∨Cm
n = Y ∨Cm

n , we would immediately obtain a contradiction.
Let λ be a partition of n into m parts. We denote by Vm

n (λ) the intersection
V∧Cn

m(λ).

Proposition 5.2 The interval [Vm
n ,V

m−1
n ] is isomorphic to a direct product of

the intervals [Vm
n (λ),Vm−1

n ], where λ runs over the set of all partition of n into m
parts.
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Proof: Here we make use of the isomorphism [Vm
n ,V

m−1
n ] ∼=Cm

n ,V
m−1
n ∨Cm

n ]
constructed in the proof of Proposition 5.1. In the proof of Proposition 3.1 we
showed that the mapping

α : [Cm
n ,C

m−1
n ] −→∏

λ

[Cm
n (λ),Cm−1

n ]

defined by α(X) = (. . . ,X∨Cm
n (λ), . . .) is an isomorphism. Restricting it to the

interval [Cm
n ,V

m−1
n ∨Cm

n ], we obtain an isomorphism of this interval into the di-
rect product of the intervals [Cm

n (λ),Vm−1
n ∨Cm

n (λ)], where λ runs over the set of
all partition of n into m parts. Repeating almost literally the proof of the iso-
morphism [Vm

n ,V
m−1
n ] ∼= [Cm

n ,V
m−1
n ∨Cm

n ], one gets that, for each λ, there is also
an isomorphism between the intervals [Cm

n (λ),Vm−1
n ∨Cm

n (λ)] and [Vm
n (λ),Vm−1

n ].
Therefore, to prove our Proposition, it remains to verify that in fact α restricted
to [Cm

n ,V
m−1
n ∨Cm

n ] maps this interval onto
∏
λ [Cm

n (λ),Vm−1
n ∨Cm

n (λ)].
Indeed, let (. . . ,Yλ, . . .) ∈ ∏

λ [Cm
n (λ),Vm−1

n ∨C
m
n (λ)]. Put Y=

∧
λYλ. We

showed in the proof of Proposition 3.1 that α(Y) = (. . . ,Yλ, . . .). But

Y=
∧
λ Yλ ⊆ ∧λ Vm−1

n ∨C
m
n (λ)) = α−1(. . . ,Vm−1

n ∨C
m
n (λ), . . .) =

= α−1(α(Vm−1
n ∨C

m
n )) = Vm−1

n ∨C
m
n ,

whence Y∈ [Cm
n ,V

m−1
n ∨Cm

n ]. Thus, we proved that the preimage under α of an
arbitrary element of

∏
λ [Cm

n (λ),Vm−1
n ∨Cm

n (λ)] lies in [Cm
n ,V

m−1
n ∨Cm

n ].
It remains to “relativize” Theorem 4.1. Let ρ be the fully invariant congruence

on F corresponding to the variety V. Given a partition λ of n into m parts, we
define the set W [n,m, λ;V] as an arbitrary set of representatives of ρ|W [n,m,λ]-
classes, where ρ|W [n,m,λ] is ρ restricted to the set W [n,m, λ]. This means that
W [n,m, λ;V] enjoys two properties:

1. if u, v ∈W [n,m, λ;V] and u 6= v, then u and v lie in different ρ-classes;

2. for every w ∈ W [n,m, λ], there exists a (unique in view of the previous
property) w̄ ∈ W [n,m, λ;V] such that wρw̄.

For every π ∈ Gλ we define a transformation π̂ of the set W [n,m, λ;V] by letting
π̂(w) = π(w) for all w ∈ W [n,m, λ;V].

Lemma 5.3 The mapping π 7→ π̂ is a representation of the group Gλ by trans-
formations of the set W [n,m, λ;V].

Proof: We have to check that π̂σ = π̂σ̂ for any π, σ ∈ Gλ. Indeed, for an
arbitrary word w ∈ W [n,m, λ;V], we have π̂(w)ρπ(w) by the definition. Applying
σ and taking into account that ρ is fully invariant, we obtain

(πσ)(w) ≡ σ(π(w))ρσ(π̂(w))ρσ̂(π̂(w)).

12



On the other hand, (πσ)(w)ρπ̂σ(w). This yields σ̂(π̂(w))ρπ̂σ(w). Since both the
words σ̂(π̂(w)) and π̂σ(w) belong to the set W [n,m, λ;V], property 1 of this set
implies that σ̂(π̂(w)) ≡ π̂σ(w) and therefore π̂σ̂ = π̂σ.

Lemma 5.3 shows that we can consider W [n,m, λ;V] as a Gλ-set. Clearly, it
is isomorphic (as a Gλ-set) to the quotient of W [n,m, λ] over the restriction ρ↓ of
ρ to W [n,m, λ]. This remark will be useful in proving

Theorem 5.4 For any pair m,n such that 2 ≤ m ≤ n and for any partition λ
of n into m parts, the interval [Vm

n (λ),Vm−1
n ] is antiisomorphic to the congruence

lattice of the Gλ-set W [n,m, λ;V].

Proof: We have mentioned in the proof of Proposition 5.2 that the inter-
vals [Vm

n (λ),Vm−1
n ] and [Cm

n ,V
m−1
n ∨Cm

n ] are isomorphic. The latter interval is
a principal ideal of the interval [Cm

n ,C
m−1
n ], which is antiisomorphic to the lattice

ConW [n,m, λ] according to Theorem 4.1. Hence [Cm
n ,V

m−1
n ∨Cm

n ] is antiisomor-
phic to the principal coideal of ConW [n,m, λ] determined by the congruence γ
on the set W [n,m, λ] corresponding to the variety Vm−1

n ∨Cm
n . From the proof of

Theorem 4.1 it is clear that γ is nothing but the restriction of the fully invariant
congruence on F corresponding to Vm−1

n ∨Cm
n to W [n,m, λ]. It is easy to check

that the latter congruence and the fully invariant congruence ρ corresponding to
V have the same restrictions to the set W [n,m, λ] whence we can identify γ with
the congruence ρ↓. We have noticed (just before the formulation of this Theorem)
that there is an isomorphism of Gλ-sets W [n,m, λ;V] and W [n,m, λ]/ρ↓. By a
standard result of universal algebra (see, for instance, [3, Theorem 4.12]) this im-
plies that the principal coideal [ρ↓) of ConW [n,m, λ] is isomorphic to the lattice
ConW [n,m, λ;V]. Thus, we have found the following chain of mappings

[Vm
n (λ),Vm−1

n ]
ξ−→ [Cm

n ,V
m−1
n ∨C

m
n ]

χ−→ [ρ ↓) ψ−→ ConW [n,m, λ; V]

in which ξ and ψ are isomorphisms and χ is an antiisomorphism. Composing ξ, χ,
and ψ we get the desired antiisomorphism of [Vm

n (λ),Vm−1
n ] onto ConW [n,m, λ;V].

6 Final remarks

In conclusion we note that, as the reader might already observe, we never used
the associativity above. Thus our principal results remain true for the varieties of
groupoids containing the variety Comm and — mutatis mutandi — for any class
of universal algebras where the notion of a balanced identity makes sense. This
generalisation as well as some further applications of the technique exhibited here
will be discussed in detail in some other place.
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We want also to draw attention to a natural combinatorial problem arising from
our considerations. Namely, it appears to be not hopeless to find an expression for
(or, at least, an estimation of) the number of congruences of the Gλ-set W [n,m, λ]
in terms of m, n, and λ, and, perhaps, the subgroup lattice of the group Gλ. As
it follows from the results of the paper, this would imply some estimations of the
number of varieties in the intervals like [Comm,Cn].
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