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ABSTRACT

I suggest a new language for a syntactic description of pseudovarieties that
is quite close to their well-known description via pseudoidentities but has the
advantage that, in this new language, every pseudovariety admits a finite basis.

Introduction

A pseudovariety is a class of finite algebras that is closed under the formation
of homomorphic images, subalgebras, and finitary direct products. Semigroup and
monoid pseudovarieties are known to coordinatize classes of recognizable languages
via a correspondence discovered by Eilenberg [10]. On the other hand, the notion of a
pseudovariety is obviously related to that of a variety, one of the central ideas within
modern abstract algebra. Thus, through pseudovarieties, we may consequently apply
various well developed algebraic approaches for studying formal languages and finite
automata. A recent book by Almeida [2] gives a comprehensive account of impressive
achievements gained this way.

The theory of varieties started with the famous HSP-theorem by Birkhoff estab-
lishing that structural (via closure operators) and syntactic (via identities) definitions
of a variety are equivalent. I have defined pseudovarieties structurally; however, they
admit a syntactic definition as well. In the literature, there exist two (different but, in
a sense, equivalent, see [15]) ways to characterize pseudovarieties by means of certain
equations. The first approach, found by Eilenberg and Schützenberger [11], deals with
sequences (or, more generally, filters) of usual identities; this approach, however, uses
a slightly different from the standard definition of what it means for such a sequence
to be satisfied in a finite algebra. The second way, due to Reiterman [19] (for algebras
of finite type) and Banashewski [8] (for the general case), is based on an extension
of the notion of an identity to that of a pseudoidentity while the meaning of being
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satisfied is closer to the usual one. The latter approach has an important advantage
since it allows to speak about finite pseudoidentity bases of a pseudovariety, a fea-
ture which has been successfully used for solving the membership problem for certain
pseudovarieties.

The aim of the present paper is to introduce another syntactical description for
pseudovarieties in a language generalizing that of pseudoidentities. In looking for such
a new description I was motivated by the recently discovered fact that the language
of pseudoidentities, though nice and useful, is not powerful enough to adequately
capture the phenomenon of the polynomial decidability. I discuss this in some detail
in Section 1. In Section 2 I define the crucial notions of an implicit relation and
of a conditional pseudoidentity and prove a Birkhoff-type theorem. In Section 3 I
demonstrate that the well-known notion of a pointlike set may be treated as a partial
case of the notion of an implicit relation and deduce from that the second main result
of the paper: every pseudovariety can be defined by a single conditional pseudoident-
ity in two variables. Section 4 contains various examples and counterexamples.

1. Preliminaries and motivation

1.1. Pseudovarieties and pseudoidentities

I briefly recall the notion of a pseudoidentity restricting for simplicity to the case
of finite semigroups (the details may be found in [2, Section 3.5]). An n-ary pseudo-
word (or implicit operation) on a pseudovariety V is a V-indexed family of functions
π = (πS)S∈V where each πS : Sn → S is an n-ary operation on S such that, for every
homomorphism ϕ : S → T with S, T ∈ V , the diagram

Sn - S

?
T n -

?
T

πS

πT

ϕn ϕ

commutes, that is,

ϕ(πS(s1, . . . , sn)) = πT (ϕ(s1), . . . , ϕ(sn)) (1)

for all s1, . . . , sn ∈ S. Obviously, every usual semigroup word w(x1, . . . , xn) ∈
{x1, . . . , xn}+ can be treated as a pseudoword (wS)S∈V where, in each finite semigroup
S ∈ V , the value wS(s1, . . . , sn) of the n-ary operation wS is merely the value of w in
S under evaluation xi 7→ si, i = 1, . . . , n. The equality (1) then holds by the very def-
inition of a homomorphism. Thus pseudowords are indeed generalized words; in fact,
they are almost words in the sense that, for every pseudoword π on V and for every fi-
nite semigroup S ∈ V , there exists a word w such that πS(s1, . . . , sn) = wS(s1, . . . , sn)
for all s1, . . . , sn ∈ S. However, in spite of their similarity to words, pseudowords,
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generally speaking, need not be effectively computable. A pseudoword π on a pseu-
dovariety V is said to be computable if there exists an algorithm which, given a finite
semigroup S ∈ V , computes the corresponding function πS. If the algorithm as a
function of |S| requires polynomial time, π is called polynomially computable. An
easy (but very important) example of a polynomially computable pseudoword is the
unary operation x 7→ xω where, in each finite semigroup S, sω denotes the idempotent
of the subsemigroup generated by the element s ∈ S.

A pseudoidentity in V is a formal identity between pseudowords on V , say, π = ρ,
and a finite semigroup S ∈ V is said to satisfy this pseudoidentity if πS = ρS. In
particular, every usual semigroup identity u = v is a pseudoidentity, and u = v holds
in S as an identity if and only if it does so as a pseudoidentity.

Theorem 1.1 [19]. Let V be a pseudovariety of finite semigroups. A subclassW ⊆ V
is a pseudovariety if and only if there exists a set Σ of pseudoidentities in V such that
W is the class of all finite semigroups in V satisfying all pseudoidentities from Σ.

Any Σ definingW this way is said to be a pseudoidentity basis of the pseudovariety
W within V . If W admits a finite pseudoidentity basis within V , it is called finitely
based within V . In the case when V is the pseudovariety of all finite semigroups I
simply call W finitely based. The property of having a finite pseudoidentity basis
is a natural and, one can say, “positive” property of pseudovarieties so it appears
to be worth studying by itself. A strong additional motivation for looking for finite
pseudoidentity bases arises from the interest in the decidability questions which I am
going to discuss next.

1.2. The finite basis property vs. decidability

The central question about a pseudovariety is usually the decidability of its mem-
bership problem. (Recall that a pseudovarietyW is said to have decidable membership
if there exists an algorithm to recognize whether a given finite semigroup S belongs
to W .) Indeed, it is sufficient to remind that such famous problems as the group
complexity problem for finite automata and the dot-depth problem for star-free lan-
guages can be in a natural way reformulated as the membership problems for suitable
semigroup pseudovarieties. From this point of view, looking for a finite pseudoident-
ity basis of a pseudovariety is a promising strategy: if a pseudovariety W is finitely
based within a decidable pseudovariety V and the pseudowords involved in the fi-
nite pseudoidentity basis are computable, then the membership in W is obviously
decidable, moreover, the corresponding algorithm for testing the membership in V
is normally rather effective. There are several striking examples when following this
strategy leads to a considerable success. One of the first was a result by Almeida and
Azevedo [3], see also [2, Section 9.2], solving the problem (suggested by König [17])
of identifying the least pseudovariety containing all finite L-trivial and all finite R-
trivial semigroups. For more recent results of similar flavour see, e.g., [5, 7, 13, 18], to
mention a few most important papers only. On the other hand, it turns out that, for
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many interesting and important pseudovarieties which have been intensively studied
from the point of view of decidability, the approach via constructing a “good” finite
basis fails because these pseudovarieties are proved to admit no finite basis at all,
good or bad.

Consider, for example, the pseudovariety join A ∨ G, that is, the least pseudo-
variety containing the pseudovariety A of all finite aperiodic semigroups and the
pseudovariety G of all finite groups. The question (posed by Schützenberger and
Rhodes, see [21, Conjecture 1.1]) of whether the membership in A ∨ G is decidable
is still open, and one cannot hope to find a solution to it in the way outlined above
since it was proved in [29] that A ∨ G has no finite pseudoidentity basis and even
no pseudoidentity basis involving only pseudowords in finitely many variables. The
same may be said about the pseudovarieties O and PO generated by all semigroups
of full (respectively, partial) order-preserving transformations of a finite chain (the
problem of a description of these pseudovarieties was suggested by Pin). The absence
of a finite basis was proved in [20] for O and in [31] for PO.

Even more confusing is, however, the circumstance that there exist decidable
pseudovarieties without finite pseudoidentity basis. Recall that every pseudovariety
generated by a single finite semigroup is decidable (cf. [2, Corollary 4.3.10]); on the
other hand, there are (plenty of) finite semigroups generating non-finitely based pseu-
dovarieties. The latter follows from Sapir’s result [24] that if a finite semigroup S
has no finite basis of (usual) identities, then the pseudovariety generated by S is
not finitely based1 and from well-known examples of finite semigroups without finite
identity basis (see, e.g., [25, Chapter 2]). This type of decidable but non-finitely based
pseudovarieties might appear to be not too convincing since pseudovarieties generated
by a single finite semigroup play a somewhat marginal role in the general theory of
pseudovarieties. There are, however, decidable but non-finitely based pseudovarieties
even amongst the most important semigroup pseudovarieties. Let J denote the pseu-
dovariety of all finite J-trivial semigroups and B the pseudovariety of all finite bands.
Zeitoun [32, 33] has shown that the pseudovariety join J ∨ B is decidable but not
finitely based. Very recently Almeida, Azevedo and Zeitoun [4] and Steinberg [26]
have simultaneously and independently proved that the pseudovariety join J ∨ G is
also decidable while it has in shown in [27] that this pseudovariety admits no finite
basis. An interesting example of a decidable but non-finitely based pseudovariety of
inverse semigroups has been found by Cowan and Reilly [9].

In all these cases, the known algorithms to test the membership are quite slow
(certainly superexponential) so one still might think that the absence of a finite pseu-
doidentity basis indeed reflects some real difficulties of the internal structure of the
pseudovariety in question. However the following example of an easily decidable non-

1To be more precise, one should say that [24] deals with (usual) identity bases in the class of
all finite semigroups rather than pseudoidentity bases. However, it follows from [2, Corollary 4.3.8]
that these notions are equivalent in their essence for pseudovarieties generated by a single finite
semigroup.
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finitely based pseudovariety destroys even this last hope. Consider the pseudovariety
EA of all finite semigroups whose idempotent generated subsemigroups are aperiodic.
It is pretty easy to observe that the membership of a semigroup S in EA can be
tested in cubic time (as a function of n = |S|). Indeed, given a semigroup S with n
elements, we can determine the set E(S) of all idempotents of S in O(n) steps just by
squaring each of its elements. Then let T0 = E(S) and Ti+1 = {st |s, t ∈ Ti}; clearly,

T0 ⊆ T1 ⊆ . . . ⊆ Ti ⊆ . . . (2)

and if Ti = Ti+1, then Ti is the subsemigroup T generated by E(S). By the definition,
O(n2) steps suffice for constructing each next Ti, and, since the chain (2) terminates
after no more than n steps, we are able to construct T in O(n3) steps. Now to
check whether S ∈ EA, we should verify if T is aperiodic and this can be done in
O(n2) steps by calculating the first n powers of each element of T . On the other
hand, it was proved in [29] that EA has no finite pseudoidentity basis and even no
pseudoidentity basis in finitely many variables. Moreover, in [30] it was shown that
this pseudovariety admits no irredundant pseudoidentity basis (this means that, if
Σ is any pseudoidentity basis of EA and Σ′ is any finite subset of Σ, then that the
set Σ \ Σ′ is still a basis of EA). Another example of a polynomially decidable but
non-finitely based pseudovariety was announced by Sapir (see [16, Theorem 3.53]);
his pseudovariety is generated by a finite semigroup.

It is clear that the absence of a finite description in the pseudoidentity language for
a simple pseudovariety like EA does not tell us that something is wrong with the pseu-
dovariety; rather it tells us that something is wrong with the language itself. This and
other examples lead to the conclusion that was already mentioned in the Introduction:
unfortunately, the descriptive power of pseudoidentities is not sufficient to distinguish
between decidable and undecidable or between hardly and easily decidable pseudo-
varieties. It provokes to search for a new, apparently more powerful language which
should provide a possibility of a finite description for such finite type objects as, say,
polynomially decidable pseudovarieties. The language must however be conservative
enough in the sense that its propositions should define no new classes apart from usual
pseudovarieties. These two requirements seem to contradict each other but it turns
out to be possible to satisfy them both. The main aim of the present paper consists
precisely in exhibiting a reasonable candidate for the role of such a conservative but
more powerful extension of the pseudoidentity language.

2. Implicit relations and conditional pseudoidentities

2.1. Relational morphisms and implicit relations

In looking for a suitable enrichment of the language of pseudoidentities, the idea
is to consider, besides pseudowords, similarly defined implicit relations. While pseu-
dowords are families of functions commuting with homomorphisms, implicit relations
are families of relations commuting with relational morphisms. Let me give a precise
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definition in which, for simplicity, I again restrict to the case of finite semigroups, the
generalization to finite algebras of an arbitrary type being obvious.

Recall that a relational morphism µ : S ; T of semigroups is a mapping from
S into the set of non-empty subsets of T satisfying the property µ(s)µ(s′) ⊆ µ(ss′)
for all s, s′ ∈ S. Clearly, each homomorphism and the inverse of every surjective
homomorphism are relational morphisms. The graph of the relational morphism
µ : S ; T is the set M = {(s, t) ∈ S × T | t ∈ µ(s)} which obviously is a subsemi-
group of the direct product S × T . Clearly, the two projections ϕ : M → S and
ψ : M → T are homomorphisms and ϕ is surjective so every relational morphism
between S and T gives rise to a diagram of the kind

M -

??
S

T
ψ

ϕ (3)

Conversely, from the diagram (3), the relational morphism µ can be recovered as
µ = ψϕ−1. Thus, each relational morphism is in fact a composition of the inverse of a
surjective homomorphism with a homomorphism. Combining such a decomposition
with the equality (1) easily yields that pseudowords commute not only with homo-
morphisms but also with relational morphisms in the sense that, for every pseudoword
π(x1, . . . , xn) on a pseudovariety V and for every relational morphism µ : S ; T with
S, T ∈ V ,

πT (t1, . . . , tn) ∈ µ (πS(s1, . . . , sn)) (4)

whenever ti ∈ µ(si) for all i = 1, . . . , n.
If the projection ψ : M → T in (3) is injective, the relational morphism µ is

called a division and S is said to divide T . Clearly, S divides T if and only if S is a
homomorphic image of a subsemigroup in T .

Now let V be a pseudovariety of finite semigroups. An n-ary implicit relation on
V is a mapping Θ associating to each semigroup S ∈ V an n-ary relation ΘS ⊆ S(n)

on S such that Θ commutes with relational morphisms between members of V in the
sense that (

∀ (s1, . . . , sn) ∈ ΘS

) (
∃ (t1, . . . , tn) ∈ ΘT

)
ti ∈ µ(si) (5)

whenever µ : S ; T is a relational morphism with S, T ∈ V .
Specializing this definition for the two particular kinds of relational morphisms

discussed above shows that every implicit relation Θ must satisfy the following two
conditions:

• for every homomorphism ϕ : S → T with S, T ∈ V ,

(s1, . . . , sn) ∈ ΘS ⇒ (ϕ(s1), . . . , ϕ(sn)) ∈ ΘT ; (6)
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• for every surjective homomorphism ϕ : S → T with S ∈ V
(t1, . . . , tn) ∈ ΘT ⇒ ϕ−1(t1)× · · · × ϕ−1(tn) ∩ΘS 6= ∅. (7)

Conversely, since every relational morphism can be represented as a composition
of the inverse of a surjective homomorphism with a homomorphism, every family
Θ = {ΘS}S∈V of n-ary relations on semigroups of a pseudovariety V satisfying the
conditions (6) and (7) constitutes an implicit relation on V . This reformulation of
the definition will be occasionally used in the sequel.

An n-ary implicit relation Θ on V is computable if there exists an algorithm which,
given a finite semigroup S ∈ V , verifies for any n-tuple (s1, . . . , sn) ∈ S(n) whether
(s1, . . . , sn) ∈ ΘS. As usual, if the algorithm as a function of |S| requires polynomial
time, Θ is said to be polynomially computable.

2.2. Conditional pseudoidentities and a Birkhoff type theorem

A conditional pseudoidentity in a pseudovariety V is a pair (Θ, π = ρ) written
as Θ ⇒ π = ρ where Θ is an n-ary implicit relation on V while π and ρ are n-ary
pseudowords on V . Such a pseudoidentity is said to hold in a finite semigroup S ∈ V
whenever πS(s1, . . . , sn) = ρS(s1, . . . , sn) for every n-tuple (s1, . . . , sn) ∈ ΘS. The
following is an exact analogue of Theorem 1.1 for the case of conditional pseudo-
identities:

Theorem 2.1. Let V be a pseudovariety of finite semigroups. A subclass W ⊆ V
is a pseudovariety if and only if there exists a set Σ of conditional pseudoidentities
in V such that W is the class of all finite semigroups in V satisfying all conditional
pseudoidentities from Σ.

Proof. The “only if” part immediately follows from Theorem 1.1 since every pseu-
doidentity π = ρ may be viewed as a conditional pseudoidentity Θ ⇒ π = ρ with
Θ being the universal relation of the appropriate arity on each semigroup S ∈ V .
To prove the “if” part I only need showing that conditional pseudoidentities are
inherited by passing to divisors (homomorphic images of subsemigroups) and finitary
direct products.

Thus, first let a semigroup T ∈ V satisfy a conditional pseudoidentity Θ⇒ π = ρ
and let µ : S ; T be a division. Take any n-tuple (s1, . . . , sn) ∈ ΘS; by (5) there
exists an n-tuple (t1, . . . , tn) ∈ ΘT such that ti ∈ µ(si) for each i = 1, . . . , n. Then
πT (t1, . . . , tn) = ρT (t1, . . . , tn) because T satisfies Θ ⇒ π = ρ. Denote by M the
graph of the division µ : S ; T and consider the decomposition of µ into the product
of the injective projection ψ : M → T with the inverse of the surjective projection
ϕ : M → S:

M -

??
S

T
ψ

ϕ
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Let mi = ψ−1(ti), i = 1, . . . , n. By (1) πT (t1, . . . , tn) = ψ(πM(m1, . . . ,mn)) and
ρT (t1, . . . , tn) = ψ(ρM(m1, . . . ,mn)). Since ψ is injective, the equality

πM(m1, . . . ,mn) = ρM(m1, . . . ,mn)

must hold. Applying the homomorphism ϕ to it yields

πS(s1, . . . , sn) = ρS(s1, . . . , sn)

because of (1) and the fact that ϕ(mi) = si for i = 1, . . . , n. Thus, every divisor of a
semigroup with a conditional pseudoidentity keeps satisfying this pseudoidentity.

Now let T1, . . . , Tk ∈ V satisfy Θ⇒ π = ρ and let S = T1 × · · · × Tk. Take any n-
tuple (s1, . . . , sn) ∈ ΘS and consider the projections ψj : S → Tj, j = 1, . . . , k. Denote
ψj(si) by tji ; then (tj1, . . . , t

j
n) ∈ ΘTj by (6) whence πTj(t

j
1, . . . , t

j
n) = ρTj(t

j
1, . . . , t

j
n)

because Tj satisfies Θ ⇒ π = ρ. By (1) πTj(t
j
1, . . . , t

j
n) = ψj(πS(s1, . . . , sn)) and

ρTj(t
j
1, . . . , t

j
n) = ψj(ρS(s1, . . . , sn)) for all j = 1, . . . ,m. Since all the projections

of the elements πS(s1, . . . , sn) and ρS(s1, . . . , sn) coincide, these two elements must
be equal. Thus, any direct product of semigroups with a conditional pseudoidentity
preserves the pseudoidentity.

3. Pointlike sets and a finite basis theorem

3.1. Pointlike sets as implicit relations

A subset A of a semigroup S is pointlike with respect to a relational morphism
µ : S ; T if there exists a ‘point’ t ∈ T such that every element of A relates to t via
µ, that is, t ∈ µ(a) for all a ∈ A. Given a pseudovariety W , a subset A ⊆ S is called
W-pointlike if A is pointlike with respect to every relational morphism between S and
a semigroup in W . I shall use the following observation which is essentially folklore
and can be proved by using a standard compactness argument:

Lemma 3.1. Let W be a semigroup pseudovariety, T a semigroup. There exist a
semigroup W ∈ W and a relational morphism ν : T ; W such that a subset of T is
W-pointlike whenever it is pointlike with respect to ν.

Now fix a positive integer n and a semigroup pseudovarietyW and consider on each
finite semigroup S the n-ary relation ΛWS defined as follows: an n-tuple (s1, . . . , sn) ∈
Sn belongs to ΛWS if and only if the set {s1, . . . , sn} is W-pointlike. Let ΛW be the
mapping that associates to each finite semigroup S the relation ΛWS . I shall call ΛW

the n-ary pointlikeness relation with respect to W .

Proposition 3.2. For any positive integer n and for any semigroup pseudovariety
W, the n-ary pointlikeness relation with respect to W is an implicit relation on the
class of all finite semigroups.
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Proof. Let µ : S ; T be a relational morphism between finite semigroups S and T
and let a set {s1, . . . , sn} ⊆ S be W-pointlike. Consider the semigroup W ∈ W and
the relational morphism ν : T ; W that controls theW-pointlike sets in T according
to Lemma 3.1. Then every element si, i = 1, . . . , n, relates to a point w ∈ W via
the relational morphism νµ : S ; W , that is, w belongs to the set νµ(si) for each i.
Since

νµ(si) = ν(µ(si)) =
⋃

t∈µ(si)

ν(t),

one can choose an element ti ∈ µ(si) such that w belongs to the set ν(ti). Then
the set {t1, . . . , tn} ⊆ T is W-pointlike. Thus, for every n-tuple (s1, . . . , sn) ∈ ΛWS ,
there exists an n-tuple (t1, . . . , tn) ∈ ΛWT such that ti ∈ µ(si) for each i = 1, . . . , n.
This means that the pointlikeness relation ΛW satisfies the condition (5) from the
definition of an implicit relation.

One may view Proposition 3.2 as a source of examples of implicit relations but it
should be mentioned that only for few pseudovarieties W the pointlikeness relation
with respect to W is known to be computable. In fact, computing pointlikes is usu-
ally a highly non-trivial task, and such results as the decidability of pointlikes for the
pseudovarieties A (Henckell [14]) and G (Ash [6]) belong to the most striking achieve-
ments of the finite semigroup theory. On the other hand, there are many examples of
easily computable implicit relations (see Section 4 below). This makes me think that
Proposition 3.2 should be rather viewed as an evidence that the notion of a pointlike
set may be placed in more general context in which one might search for tame sub-
stitutes of hardly computable pointlikes. Certain useful properties of pointlikes can
be indeed generalized to all implicit relations; this concerns, in particular, the “slice”
properties recently discovered by Steinberg [26]. I shall discuss these generalizations
and their applications elsewhere.

3.2. A finite basis theorem

The following lemma is well-known (and easy to deduce from Lemma 3.1):

Lemma 3.3. A semigroup S belongs to a pseudovariety W if and only if every W-
pointlike set in S is a singleton.

Of course, it suffices to say that every W-pointlike set with ≤ 2 elements is
a singleton, the property being equivalent to saying that the binary pointlikeness
relation ΛW(x, y) with respect to W evaluates at S as the equality relation. The
latter requirement is nothing but the conditional pseudoidentity ΛW(x, y) ⇒ x = y.
I have thus proved

Theorem 3.4. Every semigroup pseudovariety can be defined in the class of all finite
semigroups by a single conditional pseudoidentity in two variables.
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Clearly, this theorem sounds deeper as it really is because basically it is nothing
but Lemma 3.3 expressed in the language of conditional pseudoidentities. However,
in a certain sense, it is encouraging. In Section 4 I shall exhibit examples of effective
finite bases of conditional pseudoidentities for decidable pseudovarieties without finite
basis of usual pseudoidentities.

4. Examples and counterexamples

4.1. Some unary implicit relations

Specializing the general definition of an implicit relation to the unary case one
gets that a unary implicit relation on a pseudovariety V is a mapping Θ associating
to each semigroup S ∈ V a subset Θ(S) ⊆ S of S such that, for every relational
morphism µ : S ; T with T ∈ V ,

(
∀ s ∈ Θ(S)

)
Θ(T ) ∩ µ(s) 6= ∅. (8)

It turns out that many “standard” subsets of finite semigroups constitute implicit
relations.

Let S be a finite semigroup and let E(S), Gr(S), Reg(S) respectively denote
the set of all idempotents, all group elements, all regular elements of S. Given the
multiplication table of S, all these sets are obviously polynomially computable.

Example 4.1. Each of the mappings S 7→ E(S), S 7→ Gr(S), S 7→ Reg(S) is an
implicit relation on the class of all finite semigroups.

Proof. Let µ : S ; T be an arbitrary relational morphism. Then, for every idempo-
tent e ∈ E(S), its image µ(e) is a subsemigroup in T so µ(e) contains an idempotent.
Thus, S 7→ E(S) is an implicit relation.

Now let g ∈ Gr(S). There exists a positive integer k such that gk+1 = g. Take
an arbitrary x ∈ µ(g), then xkn ∈ µ(gk) for any positive integer n since gk is an
idempotent. For some n, the element xkn is an idempotent, and therefore xkn+1 is a
group element belonging to the set µ(gk+1) = µ(g). This means that the mapping
S 7→ Gr(S) is an implicit relation.

Finally, let a ∈ Reg(S), that is, aba = a for some b ∈ S. Take an arbitrary x ∈
µ(a) and an arbitrary y ∈ µ(b). There exists a positive integer k such that (xy)k is an
idempotent. Then the element z = (xy)2k−1x belongs to the set µ((ab)2k−1a) = µ(a)
and is regular in T since

zyz = (xy)2k−1xy(xy)2k−1x = (xy)4k−1x = (xy)2k−1x = z.

Thus, the mapping S 7→ Reg(S) is also an implicit relation.

Further examples of the same kind may be easily produced by observing that
Example 4.1 deals with those subsets of a semigroup which are so to say pseudoverbal,

10



that is, consist of all values of a certain pseudoword. Indeed, in every finite semigroup
S, E(S) is the set of all values of the pseudoword xω, Gr(S) equals the set of all values
of the pseudoword xωx (usually denoted by xω+1), andReg(S) coincides with the set of
all values of the pseudoword (xy)ω−1x where sω−1 denotes the (uniquely determined)
group element with the property sω−1s = sω in the subsemigroup generated by the
element s ∈ S. Generalizing these observations, for every pseudoword π(x1, . . . , xn)
on a pseudovariety V and for every semigroup S ∈ V , let Π(S) denote the set of all
values of π in S, that is,

Π(S) = {πS(s1, . . . , sn)| s1, . . . , sn ∈ S}.

Proposition 4.2. Let V be pseudovariety and π a pseudoword on V. Then the map-
ping S 7→ Π(S) is an implicit relation on V which is [polynomially] computable when-
ever π is.

Proof. Let µ : S ; T be an arbitrary relational morphism between semigroups in
V . Take an element s = πS(s1, . . . , sn) in Π(S) and, for each i = 1, . . . , n, choose an
arbitrary element ti ∈ µ(si). Then the element t = πT (t1, . . . , tn) belongs to the set
Π(T ), and the property (4) guarantees that t ∈ µ(s). The computability statement
is obvious.

There are, however, unary implicit relations which cannot be produced by pseu-
dowords. To show this, I need the next observation:

Proposition 4.3. Let V be pseudovariety and Θ an implicit relation on V. For every
semigroup S ∈ V define Θ∗(S) to be the subsemigroup of S generated by the set Θ(S).
Then the mapping Θ∗ : S 7→ Θ∗(S) is an implicit relation on V which is [polynomially]
computable whenever Θ is.

Proof. Every element s ∈ Θ∗(S) can be represented as a product s = s1s2 · · · sn
of some elements from the set Θ(S). Consider an arbitrary relational morphism
µ : S ; T between semigroups in V . Since Θ is an implicit relation on V , there
exist elements t1, t2, . . . , tn ∈ Θ(T ) such that ti ∈ µ(si) for all i = 1, . . . , n. Then
t = t1t2 · · · tn ∈ Θ∗(T ) ∩ µ(s). Given the set Θ(S), the subsemigroup Θ∗(S) can be
constructed in cubic of |S| time — apply the reasoning on p.5 to T0 = Θ(S).

In particular, combining Example 4.1 and Proposition 4.3 shows that the mapping
E∗ which associates to each finite semigroup S its subsemigroup generated by the set
of all idempotents of S is an implicit relation on the class of all finite semigroups.
Clearly, one can use this implicit relation to describe the pseudovariety EA of all finite
semigroups whose idempotent generated subsemigroups are aperiodic: a semigroup
belongs to EA if and only if it satisfies the conditional pseudoidentity

E∗(x)⇒ xω = xω+1. (9)
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Thus, the pseudovariety EA which, I recall, has no finite basis of usual pseudoidenti-
ties (see p.5) can be effectively defined by a single conditional pseudoidentity in one
variable.

Now suppose that the implicit relation E∗ can be obtained as the value of some
pseudoword π(x1, . . . , xn). Then the conditional pseudoidentity (9) would be equiva-
lent to the usual pseudoidentity

(π(x1, . . . , xn))ω = (π(x1, . . . , xn))ω+1,

and the pseudovariety EA would have a finite pseudoidentity basis, a contradiction.
I briefly mention another similar example. Recall that the type-II subsemigroup

of a finite semigroup S is the collection SII of all elements s ∈ S such that, for any
relational morphism of S into a finite group, the identity element of the group is
related to s. The celebrated type-II conjecture by Rhodes confirmed by Ash [6] gives
a polynomial algorithm to compute SII from the multiplication table of S. It can be
easily checked that the mapping ΣII associating to each finite semigroup its type-II
subsemigroup is an implicit relation on the class of all finite semigroups. This implicit
relation can be used to describe the so-called Malcev product of the pseudovariety A
of all finite aperiodic semigroups with the pseudovariety G of all finite groups, that is,
the pseudovariety A imG generated by all finite semigroups S such that there exists a
homomorphism of S into a finite group with the preimage of the identity element of
the group being aperiodic. Indeed, it follows from an old result by Rhodes and Tilson
[22, Theorem 3.1] that A im G can be effectively defined by the following conditional
pseudoidentity similar to (9):

ΣII(x)⇒ xω = xω+1. (10)

On the other hand, it was shown in [29] that the pseudovariety A im G has no finite
basis of usual pseudoidentities. This implies that the implicit relation ΣII cannot be
obtained as a value of a pseudoword.

4.2. Some binary implicit relations

Among binary relations on a semigroup, the Green relations J, R, L, H and
congruences play a distinguished role so they appear to be worth considering from the
point of view of the theory of implicit relations. Let me analyze the Green relations
first.

Proposition 4.4. Each of the Green relations J, R and L is an implicit relation
on the class of all finite semigroups.

Proof. The result is basically known (although not in the present terms). Indeed,
the following lemma may be found, for example, in [23].

12



Lemma 4.5. Let ϕ : S → T be a surjective homomorphism of finite semigroups, and
let J ′ be a J-class of T . Then ϕ−1(J ′) = J1 ∪ · · · ∪ Jk is a union of J-classes of S,
and if Ji is ≤J -minimal among J1, . . . , Jk, then ϕ(Ji) = J ′.

This lemma verifies the condition (7) in the definition of an implicit relation for the
relation J, and the condition (6) holds in the obvious way.

A literal analog of Lemma 4.5 (with the same proof) holds for the relations R
and L thus yielding that they are implicit relations as well.

On the other hand, the relation H fails to satisfy the condition (7) as the following
example shows. Consider two semigroup presentations:

S = 〈g, a| g3 = g, g2a = ag2 = a, a2 = aga = 0〉,
T = 〈h, b| h3 = h, hb = bh, h2b = b, b2 = 0〉.

It easy to calculate that the semigroup S consists of 7 elements g, g2, a, ag, ga, gag, and
0; the 4 elements a, ag, ga, and gag form a J-class consisting of 4 singleton H-classes.
The semigroup T has 5 elements h, h2, b, hb, and 0; it is obviously commutative. The
elements b and hb form a J-class being at the same time an H-class.

g g2 h h2

a ga
ag gag

b hb

0 0

The J-structure of S. The J-structure of T .

One can easily check that the mapping

{
g 7→ h
a 7→ b

extends to a surjective homo-

morphism ϕ : S → T . If H were an implicit relation, the fact that bH hb in T would
force some preimage of b to be H-related in S to some preimage of hb according to
the condition (7). However ϕ−1(b) = {a, gag}, ϕ−1(hb) = {ga, ag}, and

{a, gag} × {ga, ag} ∩HS = ∅.
Thus, unlike the other Green relations, H is not an implicit relation on the class of
all finite semigroups. This example also shows that the intersection of two implicit
relations can fail to be an implicit relation.2

It can be shown that the restriction of the relation H to the set of all regular
elements is an implicit relation on the class of all finite semigroups, and the same
holds true for the other Green relations.

2In contrast, the union of any family of implicit relations can be easily seen to be again an implicit
relation.
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Now let me speak about congruences. Any subpseudovariety W of a pseudovar-
iety V defines a natural family ΩW of pseudoverbal congruences on semigroups in
V : for any S ∈ V , the W-pseudoverbal congruence ΩWS on S is the intersection of
all congruences θ on S such that the quotient semigroup S/θ belongs to W . It is
easy to realize that the congruence family ΩW is computable whenever the pseudo-
variety W is decidable. Furthermore, a semigroup S ∈ V lies in W if and only if
the W-pseudoverbal congruence ΩWS on S equals the equality relation. This means
that if the family ΩW were an implicit relation on V , it could yield a [computable]
conditional pseudoidentity (namely, the pseudoidentity ΩW ⇒ x = y) to define an
arbitrary [decidable] subpseudovarietyW in V thus making the whole theory be quite
close to a tautology. Fortunately, this is not the case, as the following example shows.

Let SB be the pseudovariety of all finite semigroups whose square is a band and
B the pseudovariety of all finite bands. I am going to show that the family ΩB of
B-pseudoverbal congruences fails to be an implicit relation on SB.

The pseudovariety SB is defined by the identity xy = (xy)2. Denote by S the free
semigroup over the set {a, b} in the variety SB defined by this identity. The semi-
group S is finite; in fact, it consists of 20 elements — one can directly verify this but
one can also use Gerhard’s solution to the word problem in the variety SB [12]. Thus,
S belongs to the pseudovariety SB. Let T be the Rees quotient semigroup S/S2, and
let ϕ : S → T be the natural surjective homomorphism. Clearly, T = {a, b, 0} is a
zero multiplication semigroup, and therefore, the least band congruence ΩBT coincides
with the universal relation. In particular, (a, b) ∈ ΩBT . If ΩB were an implicit relation
on SB, then the condition (7) would force some preimage of a to be ΩBS-related to
some preimage of b. However the homomorphism ϕ restricted to the set {a, b} is the
identity mapping so the only preimage of a is a and the only preimage of b is b. Thus,
a and b should be ΩBS-related, and therefore, the greatest band image of S should be
trivial. This is obviously wrong since the greatest band image of S is nothing but the
free band over the set {a, b}.

It can be shown that families of pseudoverbal congruences do constitute implicit
relations in congruence-permutable pseudovarieties, in particular, within the pseudo-
variety of all finite groups. This will be published elsewhere.

I conclude the section with an interesting example which main idea is due to
Alexei Vernitskii [28]. On each finite semigroup S, the mirror relation MS is defined
by the rule: a MS b if and only if there exist elements s1, s2, . . . , sn ∈ S such that
a = s1s2 · · · sn, b = sn · · · s2s1.

Proposition 4.6. The mapping M : S 7→ MS is an implicit relation on the class of
all finite semigroups.

Proof. Let µ : S ; T be a relational morphism between finite semigroups S and
T , and let a MS b. Take elements s1, s2, . . . , sn ∈ S such that a = s1s2 · · · sn,
b = sn · · · s2s1, and pick up elements t1, t2, . . . , tn ∈ T such that ti ∈ µ(si) for each
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i = 1, . . . , n. Then t1t2 · · · tn ∈ µ(a), tn · · · t2t1 ∈ µ(b) and, obviously,

t1t2 · · · tn MT tn · · · t2t1.
Although it might be not obvious from the definition, the implicit relation M is

polynomially computable. The following is a specialization of a general algorithm
invented by Vernitskii to compute various natural implicit relations.

Given a semigroup S with n elements, let µ0 be the equality relation on S, and
once the relation µi is defined, let the relation µi+1 consist of all pairs (a, b) such
that a = ca′, b = b′c with (a′, b′) ∈ µi, c ∈ S1. The number of operations needed to
produce µi+1 equals 2n · |µi| so it has the order O(n3) (since |µi| ≤ |S|2 = n2 for all
i). The increasing chain

µ0 ⊆ µ1 ⊆ . . . ⊆ µi ⊆ . . .

terminates after no more than n2 steps. It is, however, clear that the mirror relation
MS coincides with the union of all the relations µi (indeed, if a MS b, then, for
some k, a = s1s2 · · · sk and b = sk · · · s2s1 whence (a, b) ∈ µk). Therefore, as soon as
µi = µi+1, µi in fact equals MS. Thus, MS can be computed in O(n5) steps.

The above observation allows to construct an effectively computable finite basis
of conditional pseudoidentities for a pseudovariety which polynomial decidability was
an open question so far. I mean the pseudovariety of all finite semigroups satisfying
the identities3

x2 = 0, xyxzx = 0, xy1 · · · ykxyk · · · y1 = 0 k = 2, 3, . . . ;

let me denote it by N . Almeida [1, Example 4] has observed that N cannot be
defined by a finite set of pseudoidentities and asked whether the membership in N is
decidable in polynomial time. This question has been repeated in [2] as Problem 5.
Now it is clear that the pseudovariety N is defined by the conditional pseudoidentity

a M b⇒ xaxb = 0

together with the identities x2 = 0 and xyxzx = 0. Since the implicit relation M
is polynomially computable, this condition can be checked in polynomial time, and
thus the membership in N is polynomially decidable.

It should be clear that, in a similar manner, one can construct effectively com-
putable finite bases of conditional pseudoidentities for many pseudovarieties defined
by an infinite “recurrent” series of identities or pseudoidentities.
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